PULSATING COMBUSTION IN LARGE SYSTEMS

Ya. P. Kalugin and A. V. Arseev UDC 536.46

A characteristic equation is derived for the excitation of pulsating combustion in equipment
of blast-furnace air-heater type with two-pipe fuel and air supply.

Pulsating combustion occurs in various large industrial systems such as boilers and furnaces; serious
difficulties and even damage can arise during use from such combustion in the air heaters of blast furnaces,
for example.

We have examined the excitation conditions for such combustion in blast heaters at various plants [1-
3]; we found that the pulsations arise from acoustic excitation of parts of the air system. Most often, the
combustion chamber is excited at the very low frequency of 5-6 Hz in the style of a gigantic organ tube of
height up to 35 m and diameter up to 2.5 m. The acoustic oscillations are maintained by the periodic supply
and combustion of the gas—air mixture, with a favorable delay between the fuel input and combustion, this
being close to a half-cycle, which thus satisfies Rayleigh's criterion. The mode of excitation is most simi-
lar to that in the familiar flickering-flame phenomenon,

However, when one applies the theories on such flames [4, 51, it is found that the excitation regions for
the blast heaters do not always coincide with the derivation from the theory. For this reason we have con-
sidered a more general excitation scheme with a two-type gas and air supply.

Figure 1 shows a scheme for the gystem with three separate tubes: the combustion chambers 1, gas
pipe 2, and air pipe 3, which are loaded at the ends by the referred acoustic impedances zj, which incor-
porate the effects of adjacent parts (the space under the dome, the gas mixers, the combustion chamber
proper, and so on), which are not themselves incorporated in the calculation scheme. The combustion zone
and burner lie at the points where all three elements join (x = 0). It is assumed that the oscillations are
simplified only by the variable heat release from the flame [3]. We neglect the speed of the gas by com-
parison with the speed of sound and also the damping of the sound along the elements. The small-per-
turbation method is applied [6].

The boundary conditions at the ends of the tubular elements are put in the following form:
at x = l:8p, = zbuv;

at x=— 12: 6p2 == ——22602;
at x = —lg:8py; = — 2;00,.
The steady-state resistance of the burner is
2
U;
Pi—p=k £l2—"

and we obtain the boundary conditions at the junction between the elements for small perturbations:
at %= 0 8p, —bp; = ky0,00,;
8ps — Opyz= R3p;60;.
The resistance coefficients ki include the resistance of the throttle before the burner or flow control, and
these quantities are considered as purely real.

We represent the flame for a gas—air mixture of heat of combustion q as a mobile surface of arbi-
trary shape of mean area F and mean propagation speed u, with heat transfer from this to the gas in the
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steady state (adiabatic conditions) in the form

_ Q = quF. @)
We assume that the volume of the burnt gases is equal to the volume of the
combustion mixture uF = V;, and that the flame speed and surface are de-
pendent on the air-consumption factor o« and various other conditions (flow
4 turbulence, flame stabilization, etc.), which under otherwise identical condi-
tions are determined by the flow speed or gas—air combustion mixture flow
rate V,. As the variations in u and F are linked, we assume that

u=f(@); F=FfVo )

We also assume that

q=f(a). (5)

The variable heat release from the flame under perturbed conditions is ob-
tained from (3) and (4) and (5):

8Q = quF (alnq_!_alnu)iii_}_alnl*_%} 61
dlnae  Odlne/ a dlnV, V,
We use the expression
Vs
. == ’ V =Va V
Fig. 1. The system. EENTARCCR

with identical delays 7 between gas and air supply and combustion, which enables

us to express the perturbations in the volume flow rates before and affer the
combustion zone in terms of the heat-release perturbation. We follow Raushenbakh [6] in assuming the
length of the combustion zone as substantially less than the wavelength, and neglect this in writing the
acoustic relationships. Then we get for x = 0 that

Fboy — (Fy0v, + Fybvy) = F,E8v, 4 FoE v, (7)
where
E, = N,exp (ie1), E; = Nyexp (iev)

are the transfer functions of the combustion zone, which define the effects of the heat supply to the gas, and

M= SqIL—H U+ eVl Ny S| (14— )]
. v,
are the moduli of the transfer functions of the moduli of the heat supply:
H=61nq+alnu; L=61nF‘
dlne  dlna olnV,

The quantity S is a coefficient of proportionality between the heat supply to the gas and the expansion.

The following equations [7] describe the perturbation of the gas motion for small oscillations in all
the tubular elements:

op = [Aexp( ie—J—C—) +Bexp( — g {—)]exp(—— iet); (8)
p ;
ov = —L[Aexp( ie—x-)—BeXP(—i8 i)}exp(—iet), ©)
pc c c
£ = - iv; (10)
where
® = 2nf. (11)

We substitute (8) and (9) into (1), (2), and (7) to get six homogeneous linear equations for the arbitrary con-
stants A; and B;:

- - .1
A=z e (ied) = =B +5) e (—e)

1 1
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A1 +7) exp (’—ie’—ﬁ) = — B —Zyen i l?)
2
‘3
3

A (1 +2) exp (—ieli) — — By(l —7) exp (ia i ) (12)
C3
A; I B1 =(1 —‘—llz) Az + (1_+IL2) Bz’
A1 +Bl= (l—ﬁa)Aa +(1 + lIs)Bs’
A—B  (+E)A—B) | (1+ E;)(A;— By) ,
hy hy hy
where
Z; = i s = Lo 20 B =kp0; h =
Pty ‘ P:C; ' mee F, :
We solve (12) and introduce the symbols
;‘{i‘;‘: = exp(— 24,); ;= o; — iﬁi;
_l_:ﬁ. = exp (_. 2q) )
I+p,. "
to get the characteristic equation
Ly . el,
: cho ch(oc ~—i(|3 4—8—2)] cho ch[a —z(ﬁ -{————H
1+ E, . 2 2 2 T CZZ N 1-+E, 3 3 ‘3 ?l _ _Zl—cth[al“i@l T"fli):l 13)
hy sh [(‘P2+“2)—i(ﬁz+i—z>} hy sh [((Pa—'l*aa)_i(ﬁa":‘_cj‘)“ t b
2 \ 3 /

This equation enables us to define the oscillation frequencies, the stability limits, and the regions of
excitation in the planes of the various parameters.

The excitation is dependent on the absolute magnitude of the heat release and on the phase shift be-
tween that release and the pressure oscillations at the bottom of the combustion chamber; this shift, in
turn, consists of two components: the phases for the supply of successive batches of the gas—air mixture
and the delay between this supply and the combustion. The first component is determined by the acoustic
features of the combustion chamber and supply lines (gas -pipe and air pipe), while the second is governed
by processes related to mixing and combustion. The pulsations may be excited or suppressed only for
certain relations between these components, which in general are determined by (13). There are major
difficulties in deriving a general solution to the characteristic equation, and we derive the excitation condi-
tions for certain particular cases in order to compare the solutions with experiment,

The air section of the blast heater consists of a fan connected directly to the burner with a short air
nozzle, whose length is much less than the acoustic wavelength. This has little effect on the excitation, and
the long gas pipe is the main factor here. Similar conditions are produced in flickering-flame experiments
by using a single gas-supply tube. Therefore, to compare the results with experiment we consider a one-
pipe system containing a gas line.

In that case, the dimensionless resistance coefficient of the burner is @, = thg,, and we eliminate
from (13) the term that incorporates the effect of the air line, which gives

- th [az—i (B i)] S A [al— ; (ﬁl . L)] (14)
) Cy 112 €y )

As b, is real, the stability limit (for v = 0) will be satisfied by values of the natural frequencies w

such that p, is real; these values are found from the condition .

Im (p,) = 0. (15)
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Fig. 2. Boundaries and regions of pulsation (hatched) in relation
to relative gas-pipe length I,/ A, and dimensionless burner resis-
tance coefficient fi,: a and b) gas inlet acoustically open and
closed, respectively; I and II) for positive and negative values,

respectively, in (22).

We simplify the problem by assuming that ¢ = 0, i.e., there is no wave damping in the combustion
chamber; the values of w are given by (15) from

t , I B, sin 2 (52 + 2n 7122—\}
g(m + HTI) RIS e e ( — 23’1_2) . (16)
ko
We substitute (16) into (14) to get an eduation defining the position of the stability limits:
N, sin ot sin2 (52 -+ 27 :; ) — [cthc2 -+ cos2 ((32 + 20 7{2:)-1 (1 -+ N, cos 01) — sh2a, (1 3 N, cos ot)=0. (17)

The rules of [8] indicate that the excitation conditions correspond to >>in place of equality in the
equation, while pulsation suppression corresponds to <.

If the heat input is large (N, > 0) and o = ﬁz = 0, i.e., the burner has no resistance, and the conditions
at the end of the gas pipe are ideal, the system is most similar to that for a flickering flame, and one gets
only standing waves. Then (17)simplifies even further, and the excitation conditions take the form

sin otsin2 [ B, = 2a ;—2) > 0. (18)

vo

As the gas-pipe length is increased, one then gets periodic sequences of stable and unstable regions,
which follow at each quarter wavelength. If the combustion delay is less than half a period (or sinwT > 0)
the oscillations will be suppressed for an acoustically open inlet (3, = nm) for

”
Io

@n+- 12 <, <(2n-9) 4’,11:0, L 2... (19)

A
4
and for a closed inlet (3, = (n + 1/2)7) for

2n’;:<zz<<2n )T =012, (20

The lengths of gas pipe resulting in excitation are obtained if these relationships are interchanged.

If the combustion delay is greater than half a period but less than one period (or sinuwT < 0), we get
excitation for pipe lengths given by (19) and (20), while the lengths resulting in suppression are obtained if
these are interchanged.

The relationships for the lengths of (19) and (20) have been derived as a particular case from the ex-
citation condition of (17), and they agree with those indicated by Rayleigh [9]; they were derived by experi-
ment by Sondhauss and derived theoretically in another way by Putnam [4] for a classical flickering flame.
Pariel et al. [10] checked these relationships by experiment and recommended the choice of pipe lengths
for industrial air heaters; however, on the blast heaters we have examined, the relative lengths of the gas
pipes were within the recommended limits, but strong pulsations occurred. The recommendations were
also found not to apply during a check at a Japanese plant [11].
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Fig. 3. Boundaries and regions of pulsation (hatched) in relation to relative gas-pipe
length!,/A, and burner resistance (incorporating gas-pipe input impedance): a) a, in-
creasing (numbers on curves); b) for averaged air-heater working conditions; I) mean
U, for their heaters; II) the same on increasing the burner resistance by 2500 N/m?
1-4) relative gas-pipe lengths of air heaters.

Fig. 4. Effects of pressure p (N/m? in gas ahead of burner on the amplitude A (N/m?
of pulsations at constant gas and air flow rates: 1-4) air heaters for which the relative
gas-pipe lengths are given in Fig. 3.

If the burner resistance is incorporated for ideal conditions at the inlet o, = 0, g, =0 equation (17)
takes the following form for excitation: '

— N,sinet I,
e SN Mttt | 2n =21, (21)
““>1+N2cosm‘c g(§2+ 7\2)

The sign of the following quantity influences the way the pipe length and inlet acoustic conditions con-

trol the instability:
N,sinet

14 Nycosat’ 22)

this determining the relationship between the modulus of the heat supply and the combustion delay.

The acoustic-energy loss is high in blast heaters, so we assume N, — <, and get tanwT instead of
(22).

Figure 2 shows the form taken by the instability regions in the plane of i, and L,/ A, for various signs
for (22); Figure 2a shows regions constructed for acoustically openinlets tothe gas pipe (3, = nrv), while
Fig. 2b shows the same for acoustically closed inlets (8, = (n + 1/ 2)7).

Increase in gas-pipe length results in alternation of stable and unstable regions, no matter whether
the sign in (22) is positive or negative and whether the inlet is acoustically open or closed; the unstable
regions become narrower as the burner resistance increases, while the stable regions expand. The effects
of the resistance are dependent on the relative pipe length. Only very high burner resistances result in
suppression for the acoustically open case for certain relative lengths, (},/A, = 0.25; 0.75; 1.25...) and the
same applies to the closed case (I/ A, = 0.5; 1.0; 1.5...).

These conclusions on the effect of burner resistance agree with the earlier results of [5] on the ex-
citation conditions for flickering flames; however, the resulting instability regionsdo not correspond either
to the pulsation conditions in blast heaters. '

If we incorporate wave damping (o, # 0) and the phase change at the impedance when the end of the
gas pipe differs from ideal (8,=nx/2), the results are found to change substantially; the damping in the gas
pipe results in traveling waves accompanying the standing ones, whose proportion is determined by ay, and
for o, —  there are only traveling waves.
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Figure 3a shows how the stability regions defined by (17) are distorted as o, increases; an ideal open
acoustic input to the gas pipe has been assumed, with a delay representing the average for the blast heaters
examined, w7 = 170°% for oy = 0 we get pulsation regions (hatched) similar to those given above (Fig. 2a,

regions TII).

If oy increases forluzl small, the instability regions expand, while the stable ones contract, and at a
certain damping level (o, = 0.1 for the wriassumed) and small qul the oscillations arise for any pipe
length. Maxima and minima in the excitation occur at certain pipe lengths, and these are displaced by a
quarter wavelength for an acoustically closed end. The positions of the minima are displaced towards
larger pipe lengths as o, increases. When one incorporates the wave damping along the tube, the heights
of the successive peaks decrease (those of the minima increase).

The values of o, for the maxima and minima come together as!l-tzlincreases, and for a, — « the maxi-
ma and minima vanish, with the excitation being determined by a straight line. At the minima, excitation
is possible for |u,| small and impossible for |u,| — 1, i.e., when the resistance coefficient of the burner
approaches the wave impedance of the median (pc). This result substantially revises Jones' data [12] on
oscillation in a flickering flame with damping in the supply tubes, and also the theoretical results of [4].

In the first case, the conclusion was that a flickering flame is excited at all tube lengths, probably for
small burner resistances, while the resistance of the burner was not incorporated in the theoretical analy~
sis of the second at all.

When the phase change is incorporated (3, # nm) for the input impedance of the gas pipe, the excitation
regions in Fig. 3a are displaced to the right on account of the deviation from ideal conditions at the open
end; in the limit, the displacement is a quarter wavelength (acoustically closed inlet).

Figure 3b shows the pulsation regions and the stable region for a blast heater for average parameters
found by experiment (w7 = 170°% @, = 0.2 and 8, = 0.87); the actual acoustic characteristics of the gas pipe
substantially alter the pulsation regions and shift them towards the regions of stable operation, as deter-
mined for ideal conditions at the end of the gas pipe.

Figure 3b shows also the relative gas-pipe lengths for the major blast heaters we examined; most
such heaters lie in the pulsation zone (or near it for the average conditions).

The agreement between theory and experiment is confirmed by the effects of increasing the burner
resistance (Fig. 4): the pulsations in the heater 1 were suppressed for a very low excess pressure (up to
500 N/m?), while in heater 4 they persisted even at a considerable excess pressure (up to 2500 N/m?).
Although we have not incorporated the other individual features of the heaters, and the positions of the
points are approximate, this behavior can be predicted approximately from Fig. 3b,

NOTATION

is the pressure;

is the flow velocity;

is the density;

is the speed of sound;

is the impedance;

is the wavelength;

o, B, ¥ are the quantities representing the damping and the phase change at the impedance;
are the quantities representing the burner resistance:
is the resistance coefficient;

is the calorific value of an air—gas mixture;

is the mean flame speed;

is the area;

is the heat produced by flame;

is the volume flow rate;

is the air consumption factor;

is the theoretical air needed for combustion of 1 m? of gas;
is the angular fluctuation frequency;

is the fluctuation frequency;

is the decrement;

is the time;

is the combustion delay.
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Subscripts and Superscripts

1,2,and 3 refer to the combustion chamber, gas line, and air line;

c

Lo ™
P

0 =~ O U1 W
NN

10.
11.
12.
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refers to the air—gas mixture.
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